En una oportunidad se revisó la idea intuitiva del concepto de límite.
En el ejemplo, se analizó el comportamiento de la función $f$ definida por
$$f(x)=\frac{2x^2+x-3}{x-1}$$ en torno al valor $x=1$, vale decir, "cercanos a 1", pero "no iguales a 1".
$$f(x)=\frac{2x^2+x-3}{x-1}$$ en torno al valor $x=1$, vale decir, "cercanos a 1", pero "no iguales a 1".
En resumen:
- Se observó la posibilidad de hacer que el valor de $f(x)$ se aproxime a $5$, tanto como se quiera, tomando los valores de $x$ cercanos a $1$.
- Este hecho se expresó como: $$\displaystyle\lim_{x \to 1 }{f(x)}=5$$.
El aspecto 1, se puede enfocar también como la posibilidad de hacer el valor absoluto de la diferencia entre $f(x)$ y $5$ tan pequeño como se quiera, logrando que el valor absoluto de la diferencia entre $x$ y $1$ sea suficientemente pequeño.
Es decir,$$\left |{f(x)-5}\right |$$ se puede hacer tan pequeño como se quiera, siempre que $$\left |{x-1}\right |$$ sea suficientemente pequeño, pero no igual a cero, esto es, observando que $x\neq 1$
Veamos la siguiente tabla de resultados:
Para precisar estas diferencias, se utilizaran la letras griegas $\epsilon$ (épsilon) y $\delta$ (delta), de la siguiente manera:
- $\epsilon$ será el número real positivo que indique que tan pequeño se quiere hacer el valor absoluto de la diferencia entre $f(x)$ y $5$
- $\delta$ será el número real positivo que indique que tan pequeño se quiere hacer el valor absoluto de la diferencia entre $x$ y $1$
Con esta observación, se dice entonces que $$\left|{f(x)-5}\right|$$ será menor que $\epsilon$, siempre que $$\left|{x-1}\right |$$ sea menor que $\delta$, considerando que $$\left|{x-1}\right|\neq 0$$
- La elección de $\epsilon$ es arbitraria, pero $\delta$ se obtiene a expensas de $\epsilon$
- Para cada $\epsilon$ se requiere que existe un $\delta$ especifico
- Mientras más pequeño sea el $\epsilon$ elegido, más pequeño será el $\delta$, correspondiente.
En el ejemplo se tiene que:
$$\displaystyle\lim_{x \to 1 }{f(x)}=5$$, dado que para cada $\epsilon \succ 0$, existe un $\delta\succ 0$, tal que $$\left|{f(x)-5}\right|\prec\epsilon$$, siempre que $0 \prec\left|{x-1}\right |\prec\delta$
En general, para un función $f$ cualquiera, el $$\displaystyle\lim_{x\to c }{f(x)}=L$$,
significa que la diferencia entre $f(x)$ y $L$ puede hacerse tan pequeña como se quiera, haciendo que $x$ tome valores lo suficientemente cercanos a $c$, con la resticción de que $x$ sea distinto de $c$
DEFINICIÓN FORMAL DE LIMITE
Sea $f$ una función definida en un intervalo $I\subset R$, tal que $c\in I$.
Se dice que el límite de $f(x)$ es $L$ cuando x tiende a $c$, si para todo número positivo $\epsilon$ existe un número positivo $\delta$ tal que $f(x)$ está definido y se cumple el siguiente enunciado
$$\left|{f(x)-L}\right|\prec\epsilon$$, siempre que $0 \prec\left|{x-c}\right |\prec\delta$.
De manera abreviada, se puede escribir
$$\displaystyle\lim_{x \to c }{f(x)}=L$$
o también:
$$f(x)\rightarrow{L}$$ cuando $$ x\rightarrow{c}$$.
No hay comentarios:
Publicar un comentario
Los comentarios serán leídos y moderados previamente.