:

domingo, 27 de febrero de 2011

FACTORIZACIÓN (Parte I)

La factorización es el proceso matemático que consiste en expresar un número (o un objeto como una matriz o un polinomio)  como producto de otros números u objetos llamados factores, tal que el producto de los factores resulte el numero (objeto) original.
El Teorema fundamental de la aritmética describe la factorización de los números enteros, mientras que el Teorema Fundamental del álgebra explica la factorización de polinomios.
FACTORIZACIÓN NUMÉRICA
Antes de revisar la factorización de polinomios, revisemos la factorización numérica de los números naturales. 
Un numero natural es primo si se expresa como factores numéricos de si mismo y el 1.
Si el número natural no es primo, entonces es compuesto. Se dice que un numero compuesto está en forma completamente factorizada cuando se expresa como producto de sus factores primos. 
Por ejemplo: 
$120=4.30$
$=(2^2)(5.6)$
$=(2^2)(5.2.3)$
$=2^3.5.3$  
FACTORIZACIÓN POLINÓMICA 

Análogamente, la factorización de un polinomio es el proceso de obtener los factores de dicho polinomio. 
Se dice que un polinomio con coeficientes enteros es primo, cuando no tiene factores monomios o polinomios excepto a sí mismo y 1. 
Asimismo, un polinomio con coeficientes enteros está en su forma completamente factorizada cuando cada uno de sus factores polinomiales es primo. 
Por ejemplo: 
En la factorización $x^2-36=(x-6)(x+6)$, se tiene que $x-6$ y $x+6$  son factores del polinomio $x^2-36$
Vea también: 
--> Leer más...

sábado, 26 de febrero de 2011

PRODUCTOS NOTABLES

Los productos notables, son aquellos productos de polinomios que por su estructura son de inmediato reconocimiento y es posible conocer el resultado sin necesidad de efectuar la operación de multiplicación. Estos productos especiales son de utilidad para el proceso de factorización de polinomios.   
Llamaremos variables a las letras "$x$" y "$y$", mientras que "$a$", "$b$" y "$c$" son constantes.
PRODUCTO NOTABLE 1
$(x+a).(x+b)=x^2+(a+b).x +a.b$  
Ejemplo 1: 
$(x+8).(x+3)=x^2+(8+3)x +8.3$ 
$=x^2+11x +24$
Observe que se aplica el producto notable 1 con "$a=8$" y "$b=3$"  

PRODUCTO NOTABLE 2
$(x+y)^2=x^2+2.x.y+y^2$  
Ejemplo 2:
$(x+8)^2=x^2+2.x.(8)+8^2$   
$=x^2+16x+64$

Ejemplo 3
$(2z+5y)^2=(2z)^2+2.(2z).(5w)+(5w)^2$   
$=4z^2+20zw+25w^2$
En este caso, se tiene que "$x=2z$" y "$y=5w$"  


PRODUCTO NOTABLE 3

$(x+y)(x-y)=x^2-y^2$  

Ejemplo 4:
En este ejemplo veamos que "$x=3u$" y "$y=4z$"  

$(3u+4z)(3u-4z)=(3u)^2-(4z)^2=9u^2-16z^2$  

PRODUCTO NOTABLE 4
$(ax+by)(cx+dy)=a.c.x^2+(ad+bc)x.y+b.dy^2$  
Ejemplo 5:

$(5x-2y)(3x+6y)=(5.3)x^2+(5.6+(-2)(3)x.y+[(-2).(6)].y^2$  
$=15x^2+(30-6)x.y+(-12).y^2$ 
$=15x^2+24x.y-12y^2$ 
--> Leer más...

martes, 25 de enero de 2011

TEOREMAS DE LIMITE

Sea $f$ una función definida en un intervalo $I\subset R$, tal que $a\in I$.

Teorema 1. (Funciones iguales).

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$ y $\displaystyle\lim_{x \to{a}}{f(x)}=M$, entonces $L=M$.

Teorema 2.

Si $m$ y $b$ son dos constantes cualquiera, entonces $\displaystyle\lim_{x \to{a}}{(mx+b)}=m.a+b$

Teorema 3.(Límite de una constante)

$\displaystyle\lim_{x \to{a}}{c}=c$, para cualquier real $a$, cuando $c$ es una constante.

Teorema 4.(Límite obvio)

Si $a$ es un número real, entonces $\displaystyle\lim_{x\to{a}}{x}= a$

Teorema 5.(Límite de una suma)

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$ y $\displaystyle\lim_{x \to{a}}{g(x)}=M$, entonces
$\displaystyle\lim_{x \to{a}}{[f(x)\pm g(x)]}=L\pm M$

Teorema 6.(Límite de un producto)

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$ y $\displaystyle\lim_{x \to{a}}{g(x)}=M$, entonces
$\displaystyle\lim_{x \to{a}}{[f(x)\times g(x)]}=L\times M$

Teorema 7.(Límite de un cociente)

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$, $\displaystyle\lim_{x \to{a}}{g(x)}=M$ y $M\ne 0$, entonces $\displaystyle\lim_{x \to{a}}{\frac{f(x)}{g(x)}}=\frac{L}{M}$

Teorema 8.

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$ y $n$ es cualquier entero positivo, entonces $\displaystyle\lim_{x \to{a}}{[f(x)]^n}=L^n$

Teorema 9.

Si $\displaystyle\lim_{x \to{a}}{f(x)}=L$ y $n$ es cualquier entero positivo, entonces $\displaystyle\lim_{x \to{a}}{\sqrt[n]{f(x)}}=\sqrt[n]{L}$
--> Leer más...